SYNTHESIS OF BUTIROSIN B

Sir:

Butirosins¹⁾ are new aminoglycosidic antibiotics active against some kanamycin-resistant bacteria, and butirosin B is, structurally, the 1-N-((s)-4-amino-2-hydroxybutyryl) derivative of ribostamycin,²⁾ against which the above bacteria are resistant. The present paper deals with the synthesis of butirosin B from ribostamycin.

Tetra-N-benzyloxycarbonyl-3', 4'; 2", 3"di-O-cyclohexylidene-5"-O-(1-methoxycyclo-hexyl) ribostamycin (1), which was an intermediate in the synthesis of 3',4'-dideoxyribostamycin,3) was dissolved in dry DMF and after displacement of the air in the reaction vessel with nitrogen, approximately 1~3 molecular equivalents of sodium hydride were added to the solution. The mixture was agitated at room temperature for 2 hours. The resulting pale yellow solution was neutralized with acetic acid, evaporated, and extracted with chloroform. The product, mp 125-128°C, $[\alpha]_D^{25}$ +14.4° (c 2, chloroform) had an absorption peak at 1770 cm⁻¹ characteristic of trans-fused cyclic carbamates and proved to be tri-N-benzyloxycarbonyl-3',4'; 2", 3"-di-O-cyclohexylidene-5"-O-(1-methoxycyclohexyl)ribostamycin-1, 6-carbamate (2); ir, 1770, 1720, 1535 cm⁻¹. [Found: C 63.55, H 7.03, N 4.68. Calcd. for C₆₁H₇₈N₄O₁₈: C 63.42, H 6.80, N 4.85].

The formation of the cyclic carbamate can be interpreted by initial attack of sodium hydride on the C-6 hydroxyl followed by an anchimeric attack of the resulting alkoxide ion on the urethane carbonyl at C-1. In the past, trans-fused cyclic carbamates were prepared by Miyai and Gross⁴⁾ using N, N'-carbonyldiimidazole and by us⁵⁾ using p-nitrophenoxycarbonyl chloride or phenoxycarbonyl chloride. The latter reaction occurs even in aqueous media.

Compound 2 was then dissolved in aqueous dioxane and 1.1 molecular equivalents of barium hydroxide was gradually added to the solution, at about 80°C. A weakly ninhydrin-positive product, 3, 2′, 6′-tri-N-benzyloxycarbonyl-3′,4′; 2″,3″-di-O-cyclohexylidene-5″-O-(1-methoxycyclohexyl)ribostamycin (3) was isolated in 70 % yield, mp $103\sim106$ °C, $[\alpha]_{\rm B}^{27}+16.7$ ° (c 2.1, chloroform). The absorption peak at $1770~{\rm cm}^{-1}$ characteristic of the cyclic carbamate had disappeared; ir, 1720, 1530 cm⁻¹. [Calcd. for $C_{60}H_{80}N_4O_{17}$: C 63.81, H 7.14, N 4.96. Found: C 63.69, H 7.28, N 4.90].

Thus, the cyclic carbamate was selectively hydrolyzed into free amino and hydroxyl groups, retaining the other three benzyloxy-carbonylamino groups intact.

The monoamino derivative (3) was then condensed with (s)-2-hydroxy-4-phthalimido-butyric acid. A mixture of the acid (1.3 molecular equivalents), N-hydroxysuccinimide (1.3 m. eq.) and dicyclohexylcarbo-

Fig. 1.

Fig. 1.

Fig. 1.

$$CH_2NHCbz$$
 $NHCbz$
 OH
 OH

diimide (1.3 m. eq.) in THF was stirred in an ice bath for 1 hour. To the resulting suspension containing dicyclohexylurea, 3 (1 m. eq.) was added and the mixture was stirred overnight at room temperature. The 1-N-((s)-2-hydroxy-4-phthalimidobutyryl) derivative (4) was obtained in a yield of 67 %, mp $156\sim158^{\circ}$ C, $[\alpha]_{D}^{27}+9.9^{\circ}$ (c 2, chloroform), ir, 1710, 1655, 1530 cm⁻¹. [Calcd. for $C_{72}H_{89}N_{5}O_{21}$: C 63.56, H 6.59, N 5.15. Found: C 63.58, H 6.56, N 5.04].

Compound 4 was then treated successively with dilute hydrazine in 80 % ethanol to remove the phthaloyl group, with palladium black and hydrogen to remove the benzyloxycarbonyl groups and with 1 N hydrochloric acid to remove the cyclohexylidene groups to give a product, which was purified by a column of CM-Sephadex C-25 (NH₄+ form) with ammonia (0 \sim 0.5 N). At the concentration of 0.4 N ammonia, 1-N-((s)-4-amino-2hydroxybutyryl)ribostamycin, namely butirosin B was eluted in a yield of 63 % from 4 as a monohydrate, $[\alpha]_D^{27} + 34^\circ$ (c 2, water) (lit.1) $+33^{\circ}$ (c 1.5, water)). Rf_{ribostamycin} 0.53 (on paper chromatography with 1-butanolpyridine – water – acetic acid (6:4:3:1)), the value being identical with that of butirosin B of natural origin, ir; 1650, 1560 cm⁻¹. Calcd. for C₂₁H₄₁N₅O₁₂·H₂O: C 43.97, H 7.56, N 12.21. Found: C 43.65, H 7.49, N 12.08].

The antibacterial spectrum is shown in Table 1.

Acknowledgements

The authors wish to express their thanks to Dr. H. KAWAGUCHI, Director of Research Institute, Bristol Banyu Co., Ltd., for the kind supply of butirosin B of natural origin.

Daishiro Ikeda Tsutomu Tsuchiya Sumio Umezawa

Dept. of Applied Chemistry, Faculty of Engineering, Keio University, Hiyoshi, Yokohama, Japan

HAMAO UMEZAWA

Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo, Japan

(Received October 12, 1972)

Table 1. Antibacterial spectrum of synthetic butirosin B*

	_
Test organisms**	Minimal inhibitory concentration (mcg/ml)
Staphylococcus aureus FDA 209 P	1.56
Escherichia coli K-12	0.78
" ML 1629	1.56
" ML 1630	1.56
" ML 1410	0.78
" R 81	3. 12
" R 5	6. 25
17 LA 290 R 55	0,78
и и R 56	0, 78
" R 64	0.78
у С 600 R 135	0.78
у J 5 R 11-2	1.56
Escherichia coli W 677	0.39
17 JR 66/W 677	>100
Klebsiella pneumoniae type 22 #3038	>100
Pseudomonas aeruginosa A3	3. 12
" No. 12	6. 25
и Н 9	3. 12
η. Η 11	25
" TI 13	25
" GN 315	>100
<i>y</i> 99	50
Mycobacterium smegmatis ATCC 607***	0.78

^{*} The activity for the respective strain was quite identical with that of natural origin.

References

- 1) Woo, P.W.K.; H. W. DION & Q. R. BARTZ; Butirosins A and B, aminoglycoside antibiotics. I. Structural units. Tetrahedron Letters 1971: 2617~2620, 1971; Woo, P. W.K.: II. Mass spectrometric study, ibid., 2621~2624, 1971; Woo, P.W.K.; H.W. DION & Q. R. BARTZ: III. Structure. ibid., 2625~2628, 1971
- AKITA, E.; T. TSURUOKA, N. EZAKI & T. NIIDA: Studies on antibiotic SF-733, a new antibiotic. II. J. Antibiotics 23: 173~183, 1970
- UMEZAWA, S.; T. TSUCHIYA, D. IKEDA & H. UMEZAWA: Syntheses of 3',4'-dideoxy and 3',4',5"-trideoxyribostamycin active against kanamycin-resistant E. coli and P. aeruginosa. J. Antibiotics 25: 613, 1972
- MIYAI, K. & P. H. GROSS: Heterocyclic amino sugar derivatives. II. Preparation of D-glucopyranosido[2,3:4',5']-2'-oxazolidinones. J. Org. Chem. 34:1638~1642, 1969
- 5) UMEZAWA, S.; Y. TAKAGI & T. TSUCHIYA: Studies on aminosugars. XXVI. A new method for the simultaneous protection of amino and hydroxyl groups in aminosugars and aminocyclitols. Bull. Chem. Soc. Japan 44: 1411~1415, 1971

^{**} Nutrient agar, 37°C, 17 hours

^{***} Nutrient agar, 37°C, 42 hours